Пшеничная каша химический состав


Калорийность Пшеничная крупа. Химический состав и пищевая ценность.

Пшеничная крупа богат такими витаминами и минералами, как: витамином B1 - 26,7 %, витамином B2 - 16,7 %, витамином B5 - 18,3 %, витамином B6 - 19,6 %, витамином B9 - 19,5 %, витамином PP - 24,5 %, калием - 15,6 %, магнием - 30,5 %, фосфором - 47,4 %, железом - 18,8 %, марганцем - 160 %, медью - 45,8 %, селеном - 128,5 %, цинком - 22,2 %
  • Витамин В1 входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем.
  • Витамин В2 участвует в окислительно-восстановительных реакциях, способствует повышению восприимчивости цвета зрительным анализатором и темновой адаптации. Недостаточное потребление витамина В2 сопровождается нарушением состояния кожных покровов, слизистых оболочек, нарушением светового и сумеречного зрения.
  • Витамин В5 участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых.
  • Витамин В6 участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии.
  • Витамин В9 в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний.
  • Витамин РР участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно- кишечного тракта и нервной системы.
  • Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления.
  • Магний участвует в энергетическом метаболизме, синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца.
  • Фосфор принимает участие во многих физиологических процессах, включая энергетический обмен, регулирует кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту.
  • Железо входит в состав различных по своей функции белков, в том числе ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно- восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту.
  • Марганец участвует в образовании костной и соединительной ткани, входит в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена.
  • Медь входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Дефицит проявляется нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани.
  • Селен - эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении.
  • Цинк входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии.
ещескрыть

Полный справочник самых полезных продуктов вы можете посмотреть в приложении «Мой здоровый рацион».

Химический состав пшеницы

Пшеница - единственное зерно, которое содержит глютен в нужной пропорции и желаемого качества, необходимого для приготовления легкого пористого хлеба. Он содержит все элементы, необходимые для роста тела; но, чтобы удовлетворить все потребности в питании, следует использовать все зерно, за исключением внешней шелухи. Пшеница имеет несколько слоев отрубей, внешний из которых состоит из почти полностью чистого кремнезема и совершенно не переваривается.Под этой шелухой лежат внутренние оболочки отрубей, содержащие глютен, темное вещество, которое является азотистым или образующим плоть элементом, фосфаты и другие минеральные вещества, которые помогают составить костные части тела, и масло, которое придает характерные особенности. запах зерна пшеницы. Центр, или сердце, зерна состоит из ячеек, заполненных крахмалом, мелким белым мучнистым порошком, который не имеет большой ценности в качестве пищи, за исключением теплопроизводителя. Также небольшое количество глютена диффундирует среди крахмальных клеток.Для удобства эти различные части пшеницы будут обозначены как отруби или внешняя шелуха; глютен или внутренняя оболочка из отрубей; и крахмал, или сердцевина пшеницы. Доля и качество клейковины и крахмала в разных сортах пшеницы различаются в зависимости от климата и почвы, в которой они выращиваются. На них также влияет способ измельчения зерна. Пшеница, выращиваемая в южном или теплом климате, а также в интенсивное, хотя и короткое лето на нашем северо-западе, содержит больше азота, чем пшеница, выращиваемая в холодном и влажном климате.Он теряет больше воды из-за испарения, и, следовательно, семена меньше и тверже. У некоторых сортов пшеницы внешняя шелуха тонкая и гладкая и легко отслаивается под косточками. В других случаях он толстый и шершавый, плотно прилегающий к ядру. У некоторых он светлый или хрупкий; в других - темных или жестких. Хриплая часть пшеницы составляет около четырнадцати или шестнадцати процентов от общей массы.

Рис. 1 Зерно пшеницы с внешней оболочкой из силекса и древесных волокон.

Глютен пшеницы - серое, твердое, эластичное вещество, состоящее в основном из растительного фибрина.Его можно легко изучить, сделав тесто из муки и воды и обработав его на сите под струей воды. Вода перенесет крахмал, сахар, камедь и минеральные вещества в нижнюю кастрюлю, оставив на сите комок клейковины. Он очень похож на кусок кожи животного, а после высыхания имеет клейкий вид; отсюда его название - глютен. Доля глютена варьируется от одиннадцати до пятнадцати процентов. Эта вязкая и эластичная клейковина определяет качество муки. Чем больше клейковины и чем она жестче или крепче, тем лучше мука.Глютен хорошей муки набухает в четыре или пять раз по сравнению с первоначальным объемом; в то время как мука плохого качества не набухает, а становится водянистой и липкой и иногда имеет неприятный запах из-за порчи жирных или масляных элементов.

Рис. 2. Зерно пшеницы без отрубей.

Рис. 3. Увеличенное зерно пшеницы. А - отруби; B глютен; C крахмалом.

.

Объемный и поверхностный химический состав частиц пшеничной муки разного размера

Химический состав и размер частиц являются критическими факторами, влияющими на качество и применение муки. В настоящем исследовании изучалась микроструктура и распределение объемного и поверхностного химического состава в частицах пшеничной муки разного размера. Восемь образцов пшеничной муки с разным размером частиц были получены из одной и той же нативной пшеничной муки путем просеивания (размер сита от 25 до 112 мкм м).Результаты сканирующей электронной микроскопии и анализа объемного химического состава показали, что частицы муки разного размера различались по микроструктуре, белку и составу крахмала. Дальнейший анализ белковых фракций с различной растворимостью показал, что относительно более мелкие частицы муки (диаметр <48 мкм м) имели более высокое соотношение глютенового белка (глиадина и глютенина) (60,88–64,06%). Более того, аминокислотный анализ показал, что глутаминовая кислота была богата частицами среды. Результаты XPS показали, что химический состав поверхности пшеничной муки разного размера не коррелирует с химическим составом в массе, что указывает на то, что они будут иметь независимое влияние на качество муки.

1. Введение

Пшеничная мука - это порошок, получаемый при помоле зерна пшеницы, который является основным сырьем для пищевых продуктов на основе злаков. Качество пшеничной муки, которое напрямую влияет на внешний вид, вкус и текстуру мучных продуктов, является функцией многих факторов, включая разновидность пшеницы, технологию обработки и условия хранения. В настоящее время качество муки обычно оценивается путем измерения химического состава (содержание белка, глютена, крахмала и поврежденного крахмала), реологических свойств теста (вязкоупругости и растяжимости) или непосредственного исследования характеристик при приготовлении пищи (приготовление на пару, кипячение и выпечка). .

Качество пшеничной муки

.

Взаимосвязь функциональных свойств белковых продуктов из пшеницы с составом и физико-химическими характеристиками их белков

1. Введение

Зерновые культуры в мировом масштабе являются крупнейшим (или наиболее распространенным) источником белков. Среди них важное место занимает пшеница, мировое производство которой увеличилось с 450 миллионов тонн в 1981 году до 750 миллионов тонн в настоящее время. Пшеница - единственный вид зерновых культур, из которого в промышленных масштабах были извлечены запасные белки в форме сухой пшеничной клейковины (DWG), предназначенные в качестве белкового ингредиента для улучшения хлебопекарных свойств муки и заменителя мяса в колбасных изделиях.При переработке зерна пшеницы на DWG образуются отруби, которые дополнительно являются источником ценного пищевого белка. Поэтому данная глава посвящена результатам изучения физико-химических свойств белков DWG и белковых концентратов из пшеничных отрубей с целью применения полученной информации в практических целях для улучшения и регулирования функциональных свойств белковых ингредиентов при разработке формулы питания.

Под функциональными свойствами белковых продуктов понимаются физико-химические показатели, которые определяют поведение белков при производстве пищевых продуктов, обеспечивая необходимую структуру и потребительские свойства [1].Показатели характеризуют параметры продуктов, некоторые из которых заменены или дополнены белком в технологических процессах производства пищевых продуктов. Функциональные свойства белковых продуктов оцениваются как в числовых значениях, так и в профилях зависимостей от различных технологических факторов (температура, pH, время обработки и др.) [2, 3, 4, 5]. Такой подход к оценке свойств отражен в термине «техно-функциональный», который включает особенности реакционной способности белков в технологических процессах производства и хранения пищевых систем.Функциональные свойства конкретных пищевых систем обычно оцениваются по модельным рецептам, а затем сравниваются со свойствами традиционных или известных белковых продуктов. Наличие гидрофильных и гидрофобных групп в одной цепи обеспечивает взаимодействие белков с водой, липидами, углеводами, другими соединениями и приводит к образованию стабильных эмульсий, пен, гелей и так далее. В растворах белки могут выполнять диспергирующие и суспендирующие роли, они способны цепляться за твердые частицы и тем самым формировать цементирующие структуры.Наличие полярных и неполярных, заряженных и незаряженных групп в одной полимерной цепи позволяет белкам взаимодействовать с различными типами соединений и тем самым влиять на качество пищевых продуктов.

Наиболее важными функциональными свойствами белковых продуктов являются гидратация, жиросвязывающая способность, пенообразующая способность, стабильность эмульсий, стабильность пены (FS), гелеобразующая способность, адгезия, реологические свойства (вязкость, эластичность), способность вращаться и текстурирование [1, 6, 7]. Значения функциональных свойств белковых продуктов всегда определяют направления их использования при производстве пищевых продуктов в качестве технологических или пищевых ингредиентов, но не всегда эти свойства удовлетворяют требованиям потребителя; поэтому в химии диетического белка существует направление, посвященное регулированию показателей качества растительных белковых продуктов с помощью различных процессов модификации [8, 9, 10, 11, 12].

Известно, что функциональные свойства белковых продуктов зависят от химической природы сырья (пшеница, рожь, соя и др.), Способов выделения, обработки и технологических режимов производства пищевых продуктов (pH, температура, рецептура и др.) [13, 14]. Анализируя природу растительных белков, разработчики рецептов продуктов питания, как правило, ограничиваются констатацией фактов, показывающих, как конкретный вид сырья влияет на функциональные свойства, но не изучают молекулярную основу, которая определяет эти свойства.В практике использования белковых продуктов в лучшем случае учитываются технологические факторы, влияющие на их функциональные свойства (температура, pH, электролиты и т. Д.), Тогда как характеристики химического, биохимического состава и физико-химических свойств самих полипептидов учитываются. практически не считаются. Несмотря на то, что, например, сухой пшеничный глютен (DWG) широко используется в производстве хлеба в качестве улучшителя или наполнителя [15, 16, 17, 18, 19], области его использования могут быть расширены за счет модификации функциональные свойства.

Выбор DWG обусловлен не только тем фактом, что пшеница является одной из традиционных культур многих народов мира для производства хлеба, но и тем, что растущие объемы ее возделывания нацелены на то, чтобы производители использовали ее в технологиях и др. виды пищевых продуктов. Кроме того, увеличивается количество вторичных продуктов переработки пшеницы в виде отрубей. Учитывая функциональные свойства на основе DWG, нами были разработаны специальные смеси для производства жмыхов и протеинсодержащих печений [20] на основе гелеобразующей и пенообразующей способности - зефиры с заменой яичного белка на DWG [21], на основе ферментативно гидролизованного хлеба DWG с повышенным содержанием белка из амаранта (20–25%) для диабетиков (неопубликованные данные).Однако процессы изменения функциональных свойств белковых продуктов из пшеницы, профилактических и диетических свойств продуктов из них могут быть более эффективными, если у человека есть больше информации о структурных особенностях и свойствах их белков, как это известно для белков. из других культур [22, 23, 24], что необходимы дополнительные исследования характеристик состава и свойств белковых продуктов из пшеницы, являются следующие факты. Таким образом, известно, что растворимые белки обладают большим набором функциональных свойств, чем плохо растворимые белки.У них мало изменение вязкости, желатинизации, но они обладают высокой способностью стабилизировать суспензии, эмульсии и пены. Однако есть белки, которые не подпадают под эти схемы. Таким образом, белки DWG, несмотря на их низкую растворимость в воде (1–3%), образуют структурированные гели, выдерживающие нагревание, замораживание и сушку. Поэтому их используют для приготовления белковых волокон в качестве связующего при производстве пленочных мембран, аналогов мяса и непищевых продуктов [25, 26].

Другой пример - протеиновая мука из пшеничных отрубей.Имея относительно низкие значения растворимости (10–20%), он обладает высокой жироэмульгирующей способностью (FEA) и пенообразующей способностью (FC): 72–97% и 74–100% соответственно [2, 3]. Можно увеличить растворимость белков до 25–100% путем нагревания до 40–90 ° C, изменяя ионную силу системы или pH [3], но трудно предсказать конечный результат контроля растворимости, поскольку а также другие функциональные свойства, поскольку зачастую они носят «разовый» характер и, как правило, не обеспечивают стабильного прогнозирования качества готовой продукции.Следовательно, чтобы предсказать стабильные результаты изменения качества белковых продуктов, целью настоящего исследования было изучение состава и физико-химических свойств белков DWG и продуктов из пшеничных отрубей и установление корреляционной связи между результатами и основные функциональные свойства ингредиентов.

2. Материалы и методы

2.1. Материалы

В качестве белковых продуктов использовали два образца сухой пшеничной клейковины от ООО «БМ» (Казахстан) и «Royal Ingredients Group BV» (Нидерланды), а также концентраты из пшеничных отрубей и их фракций, полученные по технологии. разработан нами [27].Для исследования аминокислотного состава белков использовали три образца пшеничной клейковины, которые вручную отмывали от муки типичного «крепкого» сорта зерна Саратов 29 (яровой), типично «слабого» - Акмолинка 1 (яровая) и Типично средняя Горьковская 52 (зимняя). Неочищенный глютен сушили на лиофильном растении, регенерировали промыванием водопроводной водой в течение 15 мин и определяли индекс деформации на приборе IDG-1. Регенерированная клейковина в зерне первого сорта характеризовалась как слегка удлиненная, «прочная» с показателем прибора 58 единиц, во втором - растягивающая, «нормальная» с показателем 70 ед. Оборудования, третья - как очень расширяемый и «слабый» с показателем в 100 единиц оборудования.

Белковые концентраты из пшеничных отрубей получали из различных систем технологического процесса ОАО «Московский комбинат хлебопродуктов», качество зерна и отрубей соответствовало требованиям стандартов. Отруби объединяли, просеивали через сито разного диаметра и получали гранулометрические фракции с размером частиц более 1000, 670, 195 и менее 195 мкм.

Для сравнения результатов взаимосвязи функциональных свойств и физико-химических параметров белков из пшеницы и белковых продуктов из другого вида сырья, соевого концентрата, соевого изолята Supro 760 от «Soloe» Supro (США), соевого изолята ArdexF ADM ( США), концентраты из амаранта и зерна ржи, полученные по нашим методикам [28, 29].

2.2. Определение химического состава

Показатели химического состава белковых продуктов определяли по методикам государственных стандартов Российской Федерации и общепринятым методикам. Массовая доля влаги определялась по ГОСТ 13586.5-85; зольность - ГОСТ 10847-74; массовая доля жира - по методике Сокслета в аппарате фирмы «Бучи» - ГОСТ 29033-91, массовая доля белка - в автоматизированной системе Кьельдаля фирмы «Бучи» - ГОСТ 10846-91, волокно - по Геннесбергу и Штоману - ГОСТ 31675-2012.Углеводы рассчитывались как разница между 100% и суммой массовой доли белка, жира, золы и клетчатки.

2.3. Определение аминокислотного состава белков

Использовали жидкостной хроматограф Hitachi (Япония) в режиме с сульфированным сополимером стирола и дивинилбензола и ступенчатым градиентом буферных растворов цитрата натрия с увеличением pH и молярности. Обработку данных проводили в онлайн-системе «MultiChrome 1.52» для Windows 98. Пробу 3–5 мг помещали в стеклянную ампулу, 300 мкл смеси концентрированной соляной кислоты и трифторуксусной кислоты (2, 1) с 0 .Добавляли 1% 2-меркаптоэтанол. Образец замораживали в жидком азоте, вакуумировали и гидролизовали при 155 ° C в течение 1 ч. Гидролизуемую смесь упаривали на роторном испарителе (Centrivap Concentrator Labconco, США). К остатку добавляли 0,1 н. HCl и центрифугировали 5 мин при 800 g на центрифуге Microfuge 22R (Beckman-Coulter, США).

2.4. Определение фракционного состава белков

1 г белкового продукта, взвешенного с точностью до 0,001 г, помещали в центрифужную пробирку, 10 см. 3 0.Добавляли 5 моль / дм 3 раствора NaCl, встряхивали в течение 1 ч и центрифугировали 15 мин при 8000 g. Центрифугат сливали, к осадкам добавляли 10 см 3 холодной дистиллированной воды, тщательно перемешивали и снова центрифугировали. В комбинированных центрифугах брали альбумины и глобулины. Для экстракции белков глиадина к осадкам добавляли 20 см. 3 70% этанола, встряхивали при 180–200 об / мин в течение 1 ч и оставляли на ночь при комнатной температуре. На следующий день образец встряхивали 30 мин и центрифугировали при 8000 g в течение 15 мин.Центрифугат (глиадин) сливали, 20 см. 3 0,1 моль / дм 3 уксусную кислоту добавляли к осадкам и снова встряхивали в течение 1 часа. Суспензию центрифугировали в тех же условиях. Процедуру экстракции повторяли еще раз. Комбинированные растворы белков, растворимых в уксусной кислоте, считали растворимым глютенином. Чтобы выделить из осадка нерастворимый глютенин, 20 см 3 AUC включали 0,1 н. Кислотную кислоту, 6 М мочевину и растворитель цетил-триметиламмонийбромид (pH 4.1) добавлены [24]; пробирки встряхивали в течение 1 ч и центрифугировали. Операцию экстракции повторяли еще раз, после чего центрифуги объединяли и в них определяли содержание белка Кьельдаля. Осадок белка был обозначен как нерастворимый белок. Количество каждой фракции выражали как процент растворимого и нерастворимого белка от общего количества белка в образце.

2,5. Определение функциональных свойств белковых продуктов

Функциональные свойства образцов DWG, белковых продуктов из пшеничных отрубей, амаранта, ржи и сои определяли по методикам, описанным в [30].

2.6. Содержание тиоловых обменных групп

. Содержание дисульфидных связей и сульфгидрильных групп в белковых препаратах из пшеничных отрубей анализировали методом Эллмана в модификации Богданова [31].

2.7. Определение константы конечной стадии агрегации белков

Для определения агрегационных свойств белков образец продукта 1,0 г с точностью ± 0,001 г суспендировали в 10 см 3 0,05 моль / дм 3 раствор CH 3 COOH в течение 1 ч на механическом шейкере.Затем раствор центрифугировали в течение 15 мин при 3000 g, центрифугат фильтровали и в фильтрате определяли белок Лоури. Раствор разбавляли 0,05 моль / дм 3 уксусной кислотой до концентрации 0,02% белка. К 1,3 см раствора белка 3 в кювету спектрофотометра добавляли 1,3 см 3 0,2 моль / дм 3 фосфатный буфер, содержащий 2 моль / дм 3 NaCl (pH 5,6). Затем через 10 мин при длине волны 350 нм измеряли оптическую плотность (мутность) раствора.Константу конечной стадии агрегации (τ 10 / C) рассчитывали как отношение мутности (τ) к концентрации белка (C) [32].

Анализы проводились в 3–5 повторностях, результаты представляли как среднее арифметическое. Для определения доверительного интервала среднего арифметического результата использовали критерий Стьюдента при уровне значимости p = 0,05. Статистическая обработка результатов проводилась с помощью программ Statistica 6.0 и Mathematica 5.2.

4. Заключение

Результаты исследований химического состава, физико-химических характеристик белков и функциональных свойств сухой пшеничной клейковины, ее компонентов, белковых концентратов из пшеничных отрубей и их гранулометрических фракций показали целесообразность ее применения. регулировать показатели качества белковых продуктов с целью их улучшения и с учетом выявленных закономерностей. Установлена ​​высокая корреляционная положительная зависимость растворимости белков пшеничного глютена, белковых концентратов из пшеничных отрубей и их фракций с количеством альбуминов и глобулинов, суммой неполярных аминокислот (глютен, глиадин, растворимый глютенин) и отрицательная корреляция. с глиадиновым глютеном.С показателями метаболизма тиолов взаимосвязи растворимости и WBA не выявлено.

Для лейкоцитов белковых продуктов характерна обратная зависимость от суммы полярных аминокислот обеих фракций глютенина; для FBA это прямая зависимость от суммы белков глютена и полярных аминокислот в глиадине и цельном глютене, и обратная зависимость наблюдалась для суммы неполярных аминокислот в растворимой в спирте фракции. Чем ниже коэффициент агрегации белков, следовательно, чем меньше степень гидрофобных взаимодействий, меньше -SH-групп, но больше -S-S-связей в белках, тем выше FBA.

FEA положительно коррелировал с количеством глютенина и нерастворимого остатка в белках пшеничных отрубей и суммой неполярных аминокислот в глютене, глиадине. Отрицательная зависимость установлена ​​для суммы полярных аминокислот, как целого глютена, так и всех его фракций. Чем выше степень гидрофобных взаимодействий в белковых продуктах и ​​чем меньше в них дисульфидных связей, тем выше способность эмульгировать жир и стабилизировать эмульсию.

Выявлена ​​средняя корреляционная зависимость ФК и массовой доли белка для всех изученных видов белковых продуктов.FC белков глютена положительно коррелировал с суммой неполярных аминокислот глиадина, растворимого, нерастворимого глютенина и полярных аминокислот нерастворимого глютенина. Сумма двух видов аминокислот также положительно влияет на ФК других белковых продуктов. Чем выше массовая доля альбуминов, глобулинов и глиадина в глютене, тем больше продуктов FC. Что касается белковых продуктов FEA из пшеничных отрубей, было обнаружено, что чем выше содержание SH-групп и меньше количество S-S-связей в белковых продуктах, тем больше продуктов FC-белков.

Следовательно, основные функциональные свойства исследуемых белковых продуктов из пшеницы взаимосвязаны с массовой долей белка, особенностями фракции, аминокислотным составом белков, количеством ковалентных дисульфидных связей, сульфгидрильных групп и нековалентных ( гидрофобные) взаимодействия. Таким образом, чтобы прогнозировать высокие и стабильные функциональные свойства белковых продуктов из пшеницы для производства или их модификации, целесообразно учитывать закономерности взаимосвязи этих свойств с химическим составом и физико-химическими свойствами их белков.

.

Химия яиц и яичной скорлупы - Сложный процент

Поскольку химия шоколада - это тема, которая в значительной степени исчерпана на сайте (см. Здесь, здесь, здесь, здесь и здесь), на пасхальные выходные мы вместо этого сосредоточимся на «яичной» стороне пасхальных яиц. . Для такого простого блюда на кухне химический состав яиц на удивление сложен. Здесь мы кратко рассмотрим их состав, а также несколько советов по химии, которые могут помочь в их приготовлении!

Яичная скорлупа

Имеет смысл начать с внешней стороны яйца и продвигаться внутрь, поэтому давайте начнем с скорлупы яйца.Он состоит в основном из карбоната кальция, химического соединения, которое также составляет большинство морских раковин, а также мела и известняка. Наночастицы карбоната кальция выстраиваются белками в упорядоченные кристаллы, в конечном итоге образуя минерал кальцит, из которого состоит оболочка. Оболочка на самом деле не является полностью твердой - она ​​имеет тысячи крошечных пор, в среднем около 9000, которые позволяют газам проходить внутрь и наружу. Как мы увидим позже, это может иметь значение для приготовления пищи.

Цвет яичной скорлупы также может быть разным; куриные яйца имеют тенденцию быть где-то в цветовом спектре между белым и коричневым, но яйца других видов птиц также могут иметь синие или зеленые оттенки.Эта окраска обусловлена ​​отложением молекул пигмента на яичной скорлупе, когда она образуется в яйцеводе курицы. Один пигмент, протопорфирин IX, придает скорлупе коричневый цвет. Этот пигмент является предшественником гемоглобина, кислородного соединения, содержащегося в крови. Другие пигменты, такие как ооцианин, придающий синий и зеленый цвет, являются побочными продуктами образования желчи. В белой яичной скорлупе отсутствуют молекулы пигмента.

Яичный белок

Попав внутрь яйца, мы сначала попадаем в яичный белок, или белок.Яичный белок состоит из нескольких слоев и в основном состоит из воды (90%). Ряд белков составляют большую часть оставшихся 10%, служа множеству различных целей. Считается, что некоторые из них, такие как овальбумин, обеспечивают питание развивающегося цыпленка, а также блокируют действие пищеварительных ферментов. Другой, кональбумин или оватрансферрин, прочно связывает атомы железа, чтобы предотвратить их использование бактериями и, следовательно, помочь предотвратить инфекцию, а также обеспечить поступление железа для развивающегося цыпленка.Наконец, одним из наиболее важных белков в белке с точки зрения консистенции яичного белка является овомуцин. Этот белок делает яичный белок густым и придает ему густую консистенцию.

Яичный желток

Яичный желток состоит из множества сферических отделений. В отличие от яичного белка, который содержит очень мало жира, желток содержит значительное количество жирных кислот, таких как олеиновая кислота, пальмитиновая кислота и линолевая кислота, а также высокий уровень холестерина.Он также содержит жирорастворимые витамины (A, D, E и K).

Цвет желтка является следствием присутствия двух химических соединений: лютеина и зеаксантина. Оба эти соединения известны как ксантофиллы, а также могут быть классифицированы как каротиноидные соединения; Следовательно, они являются членами того же химического семейства, к которому принадлежит бета-каротин, химическое вещество, придающее моркови оранжевый цвет. Корм для кур может влиять на цвет желтка, и по этой причине для улучшения цвета в корм для кур можно добавлять бета-каротинсодержащие вещества или даже лепестки календулы.Интересно, что включение в корм для кур основных цветообразующих соединений красного перца, капсантина и капсорубина, может сделать желтки темно-оранжевыми или даже красными.

Кулинария яиц

Итак, теперь мы немного знаем, из чего сделаны яйца, что на самом деле происходит, когда мы их готовим? Во многом это является следствием того, что происходит с белками в яйце, когда мы их нагреваем. Начнем с того, что в сыром яйце длинные молекулы белка свёрнуты индивидуально.Однако, когда мы их нагреваем, эти цепочки начинают разворачиваться - процесс, известный как «денатурация». После распаковки белки образуют трехмерную сеть, удерживая воду в крошечных карманах сети и вызывая затвердевание. Яичный белок превращается из прозрачного в непрозрачный из-за того, что сгруппированная белковая сеть отклоняет свет, а не позволяет ему проходить.

Что касается соединений, придающих яицам их вкус, было проведено очень мало исследований, чтобы определить, какие соединения вносят важный вклад.Однако мы знаем, что сероводород является наиболее важным источником характерного запаха яиц. Это соединение образуется в результате реакции серосодержащих белков яичного белка во время приготовления. Чем дольше варят яйцо, тем больше выделяется сероводород, и более старые яйца также производят его в больших количествах при варке. Испорченные яйца неприятно пахнут из-за еще более высокого уровня сероводорода.

Сероводород также может играть роль в появлении зеленого слоя вокруг яичного желтка, который иногда может возникать.Это происходит из-за реакции газа с железом в яичном желтке с образованием сульфида железа, который образует зеленый слой. Часто причиной этого может быть длительный нагрев яйца во время варки; Хотя это безвредно, его можно предотвратить, быстро охладив яйца после приготовления, погрузив их в холодную воду.

Когда яйца сварены вкрутую, возраст яйца может повлиять на то, насколько трудно отклеить скорлупу. Это связано с изменением щелочности яичного белка со временем. Так как скорлупа яйца содержит тысячи пор, которые позволяют газу углекислого газа диффундировать из яйца, pH яичного белка повышается примерно с 7.От 6 до 9,2 примерно после недели хранения. Приготовленный альбумин сильнее прилипает к внутренней части скорлупы при более низком pH, а это означает, что свежие яйца делают процесс очистки яиц более неприятным. Напротив, со старым яйцом все намного проще.

Для борьбы с этим, если вы делаете вареные яйца из свежих яиц, рекомендуется добавить пищевую соду в воду, в которой варятся яйца, чтобы сделать ее более щелочной - хотя это также может сделать яйца немного вкуснее. больше серы, и вопрос о том, действительно ли это имеет какое-либо реальное значение, является спорным.Добавление соли в воду может помочь, если во время приготовления яйца трескается, поскольку яичный белок быстрее затвердевает в соленой воде, хотя опять же нет никаких доказательств того, что это облегчает очистку яиц.

Понравились этот пост и изображение? Подумайте о поддержке сложного процента на Patreon и получайте предварительные просмотры будущих публикаций и многое другое!

Изображение в этой статье находится под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Международная лицензия. См. Рекомендации по использованию содержания сайта.

Ссылки и дополнительная литература

.

Смотрите также